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DETECTION OF FUNGUS‐INFECTED CORN KERNELS USING

NEAR‐INFRARED REFLECTANCE SPECTROSCOPY AND COLOR IMAGING

J. G. Tallada,  D. T. Wicklow,  T. C. Pearson,  P. R. Armstrong

ABSTRACT. Contamination of grain products by fungus can lead to economic losses and is deleterious to human and livestock
health. Detection and quantification of fungus‐infected corn kernels would be advantageous for producers and breeders in
evaluating quality and in selecting hybrids with resistance to infection. This study evaluated the performance of single‐kernel
near‐infrared reflectance spectroscopy (NIRS) and color imaging to discriminate corn kernels infected by eight fungus species
at different levels of infection. Discrimination was done according to the level of infection and the mold species. NIR spectra
(904 to 1685 nm) and color images were used to develop linear and nonlinear prediction models using linear discriminant
analysis (LDA) and multi‐layer perceptron (MLP) neural networks. NIRS was able to accurately detect 98% of the uninfected
control kernels, compared to about 89% for the color imaging. Results for detecting all levels of infection using NIR were
89% and 79% for the uninfected control and infected kernels, respectively; color imaging was able to discriminate 75% of
both the control and infected kernels. In general, there was better discrimination for control kernels than for infected kernels,
and certain mold species had better classification accuracy than others when using NIR. The vision system was not able to
classify mold species well. The use of principal component analysis on image data did not improve the classification results,
while LDA performed almost as well as MLP models. LDA and mean centering NIR spectra gave better classification models.
Compared to the results of NIR spectrometry, the classification accuracy of the color imaging system was less attractive,
although the instrument has a lower cost and a higher throughput.

Keywords. Classification, Discriminant analysis, Maize, Multi‐layer perceptron, NIR spectroscopy.

xtensive fungal contamination of grain products
can lead to substantial economic losses for farmers,
traders, grain handlers, and millers. The quality
grade has to be reduced when a significant number

of mold‐damaged kernels persist in the bulk of the grain; con‐
sequently, the grain is penalized with a lower price, and its
target end‐use becomes limited. More importantly, the pres‐
ence of fungal infection in food or grain is a major health and
safety issue because of the potential debilitating diseases in
humans and livestock associated with ingesting high levels
of mycotoxins. In the case of corn, aflatoxin and fumonisin
are the most common and most toxic mycotoxin compounds
produced by fungi (Bruns, 2003). Certain Aspergillus species
can invade host plants during their growth and may lead to
accumulation  of aflatoxins in the grains, while fumonisins
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are produced by certain Fusarium species. Exposure to afla‐
toxin through the diet can lead to liver cancer (Williams et al.,
2004), and fumonisins are a potential risk factor for neural
tube and other birth defects associated with the consumption
of tortillas during the first trimester (Marasas et al., 2004).
Another common fungus, Stenocarpella maydis (syn. Diplo‐
dia maydis), causes a neuromuscular disease called diplodio‐
sis, a common nervous disorder of cattle and sheep grazing
on infected maize crop residue in southern Africa (Prozesky
et al., 1994) and more recently in Argentina (Odriozola et al.,
2005).

Numerous factors such as seasonal, biotic, and abiotic
constraints, together with the kind of cultural practices
adopted for different hybrids, can synergistically influence
the incidence of mycotoxins in corn. Changes in manage‐
ment practices are often found to be effective in controlling
contamination through timely planting, better irrigation wa‐
ter control, pest and disease control, and improved plant
nutrition, especially at certain specific stages of crop growth.
However, the most highly recommended approach for reduc‐
ing the levels of mycotoxins in food products is to develop
better hybrids that are resistant to fungi (Betran and Isakeit,
2004; Menkir et al., 2006).

Screening methods have been developed to evaluate
promising breeding lines of corn for fungal resistance, in‐
cluding a kernel‐screening assay (Brown et al., 1999),
enzyme‐linked immunosorbant assay (ELISA) analysis of
aflatoxin and fumonisin (Abbas et al., 2006), and the ergos‐
terol test (Dowell et al., 1999). These methods require con‐
siderable sample preparation and chemical processing,
which often take a considerable amount of time and re‐
sources. Optical methods have been explored to significantly
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reduce the amount of time required to detect fungus‐infected
kernels in soybeans, corn, and wheat and to identify the spe‐
cific species causing the infection. Ng et al. (1998) used a col‐
or camera to evaluate mechanical and mold damage in corn
kernels by digitally measuring the infected areas. Wang et al.
(2004) investigated fungus‐infected soybeans with four com‐
mon species using a DA7000 spectrometer in the range of 400
to 1700 nm, and they achieved very high classification accu‐
racies of 99% between healthy and infected kernels. Gordon
et al. (1999) utilized transient near‐infrared spectroscopy and
were able to show the potential of the technique for on‐line
evaluation.  Their early tests achieved 85% or 95% success
rates for grains infected with A. flavus. Berardo et al. (2005)
used NIRS in the range of 400 to 1100 nm to rapidly detect
kernel rot and mycotoxins in bulk samples of maize. They
were able to derive a reasonable calibration model to esti‐
mate the percentage fungal infection of Fusarium verticil‐
lioides and the quantity of ergosterol and fumonisin B1 in the
meal. Pearson and Wicklow (2006) investigated the detection
of corn kernels infected with a number of different fungal
species using NIR reflectance, visible and NIR transmittance
imaging, color reflectance imaging, and x‐ray imaging. They
achieved high discrimination accuracies using stepwise dis‐
criminant analysis, particularly for the extensively damaged
kernels. A critical factor in the success of these methods is the
observable changes in the color and shape of the seeds
brought about by metabolic processes caused by the im‐
pregnation and growth of fungus on the kernels. While these
changes lead to lower kernel densities and reduced seed hard‐
ness, the effectiveness of sorting methods to identify infected
kernels largely depends on the virulence of the fungus and the
extent of damage it caused (Wicklow, 1995). In addition,
most studies on corn have focused on stationary presentation
of the kernels. In order to achieve higher sorting rates, espe‐
cially for simultaneous evaluation of many hybrid lines by
the plant breeder, technologies that allow for continuous ker‐
nel movement must be developed.

Pearson et al. (2008) designed a color image‐based sorter
that performed well in separating red and white wheat at a
moderate feed rate of about 30 kernels s‐1, achieving sorting
accuracies of 96% and 95% for “easy” and “difficult” sam‐
ples, respectively. Armstrong (2006) developed a rapid
single‐kernel sorting instrument that receives infrared reflec‐
tance spectra from kernels tumbling down a light tube. The
instrument can measure some chemical constituents such as
protein and oil contents in corn and soybeans, and sort the
kernels into classes suitable for breeding work. Both of these
instruments could be used to detect fungus‐contaminated
corn kernels, but they have not yet been tested for their ability
to do so.

OBJECTIVES
The objectives of this study were to evaluate the perfor‐

mance of rapid single‐kernel NIRS and color imaging instru‐
ments for detection and identification of fungus‐infected
corn kernels. Classification models used for discrimination
were also compared based on linear discriminant analysis
and artificial neural networks. Several spectrometric data
and normalized histogram data pretreatments were also
compared for achieving robust discrimination models.

Table 1. Grain sample codes, fungal cultures, and accession numbers.[a]

Label Fungus Species Accession No.

ASP1 Aspergilus flavus[b] NRRL 32354
BIP1 Bipolaris zeicola NRRL 47238
DIP1 Diplodia maydis NRRL 43670
FUS1 Fusarium oxysporum NRRL 37597
PEN1 Penicillium oxalicum NRRL 58759
PEN2 Penicillium funiculosum NRRL 58760
TRI1 Trichoderma harzianum NRRL 54022

Symptomless kernels from un‐inoculated ears
CON1 Irrigated plot
CON2 Non‐irrigated plot

[a] Grain from wound‐inoculated ears of Burrus 794sRR.
[b] Non‐aflatoxin producing strain)

MATERIALS AND METHODS
CORN SAMPLES

Samples for this study were obtained from a field‐grown
commercial corn hybrid, Burrus 794sRR, in Kilbourne, Illinois,
in 2007. The corn ears were wound‐inoculated during the late
milk to early dough stage of kernel development with one of the
fungal species and accessions as listed in table 1 according to
a procedure by Wicklow (1999). The ears were allowed to field
dry and were then hand‐harvested, manually shelled, packed
into separate plastic bags, and placed in cold storage.

A four‐point grading scale according to level of severity of
fungal damage was adopted according to the following criteria:

�  Level 1: Asymptomatic; no visible signs of damage ex‐
cept for very minor discoloration.

�  Level 2: Mildly infected; tiny blotches of fungal
growth on kernel surfaces; slightly discolored.

�  Level 3: Moderately infected; visible fungal growth on
30% to 70% of the kernel surface; heavily discolored.

�  Level 4: Severely infected; fungal growth over the en‐
tire surface of severely discolored kernels.

The resulting samples for the study had kernels of varying
levels of damage according to the infecting fungal species.
The study assumed that each sample contained the entire pos‐
sible range of observable infection severity in order to aid in
kernel selection. Two samples, infected by different species
of Penicillium  and exhibiting significant differences in the
severity scales, were treated independently.

Three of the samples were so severely rotted that it was not
possible to identify grains exhibiting varying levels of infec‐
tion and were excluded from the study. Severely diseased,
shrunken, and light kernels were also removed from the sam‐
ple pool as they can be easily aspirated out by grain cleaners.
Two un‐inoculated control samples that were obtained from
irrigated and non‐irrigated plots were also used.

Corn kernels belonging to levels 1 and 4 were first selected
to establish the range of fungal damage. Asymptomatic ker‐
nels of level 1 were physically intact with no visible mechani‐
cal or physiological damage, and they appeared to be free of
any fungal infection, although they possibly came in contact
with the fungus. At the other end of the range, level 4 kernels
had visible symptoms of heavy infection almost consuming
the entire kernel body. Kernels for levels 2 and 3 were then
selected based on this extreme observable range of infection.
The classification of kernels was thus based on the levels of
infection displayed by the specific fungal species present. A
representative sample of graded kernels is shown in figure 1
for BIP1 (Bipolaris zeicola) kernels.
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Figure 1. Representative sample of six randomly picked kernels from control 1 and graded BIP1 (Bipolaris zeicola) kernels. Columns, from left to right,
are control 1 and levels 1 through 4. Top three rows show the germ side; bottom three show germs down.

A total of seven inoculated samples and two control sam‐
ples were used. Control samples were not inoculated, and no
observable mold infection was observed. Twenty‐four ker‐
nels were manually selected from a sample for each infection
level and fungus species and placed in separate paper pack‐
ets, for a total of 96 kernels for each sample or a total of
672�infected kernels. Ninety‐six kernels were also selected
from each of the two control samples, and thus a grand total
of 864 kernels were used for NIRS and image analysis. The
samples were equilibrated for moisture at laboratory room
conditions for more than seven days prior to NIRS or color
imaging data collection.

SINGLE‐KERNEL NIR REFLECTANCE MEASUREMENT

The NIR instrument was primarily designed to rapidly sort
kernels of hybrids according to a target constituent such as
protein and oil contents. The instrument consisted of a
spectrometer, a light tube assembly, a control circuit, and a
computer. The CDI spectrometer (NIR256L‐1.7T1, Control
Development,  Inc., South Bend, Ind.) had a thermoelectrical‐
ly cooled 256‐pixel InGaAs sensor with a spectral range of
904 to 1685 nm. The light tube assembly had 48 miniature
tungsten lightbulbs (Part 1150, 5 V, 0.115 A, Gilway Techni‐
cal Lamp, Woburn, Mass.) arranged equidistantly in six rows
along the tube periphery. A photo‐electric switch was used to
monitor the passage of the kernels in the upper portion of the
instrument. When triggered by a moving kernel, this switch
sends an electronic signal to the spectrometer to collect a scan
and send the data directly through a USB interface to the
computer. A Microsoft Visual C++ program processed the
spectral data. A complete description of the construction and
operation of the assembly is provided by Armstrong (2006).
One difference between the instrument used by Armstrong
(2006) and that used in this study is that a bifurcated fiber col‐
lected spectra from both ends of the tube rather than the single
fiber previously used.

The instrument was allowed to warm up for at least an
hour in the morning to stabilize the light and spectrometer

electronics.  Background dark current and light reference re‐
flectance spectra from a white Spectralon panel (99% diffuse
reflectance)  were collected at constant intervals during the
spectral data collection. While a kernel moved approximate‐
ly midway through the light tube, its raw diffuse reflectance
spectrum was collected using a 43 ms integration time. This
integration time was experimentally selected to avoid satura‐
tion of the diode array sensor. The absorbance spectrum was
automatically  computed using the dark and reference spectra
and then individually saved for later processing. The scan‐
ning of kernels was randomly sequenced by feeding the ker‐
nels using a vibratory feeder. The feeder provided kernel
singulation and avoided hand‐contact with the kernels. The
kernels from a packet were loaded into the feeder and sequen‐
tially scanned until 50 spectral scans were collected. A total
of 1800 spectra were collected. This procedure was repeated
for the packet, with replacement, to produce another 1800
spectra.

SINGLE‐KERNEL COLOR IMAGE ACQUISITION

A color imaging system was recently developed to sepa‐
rate red and white winter wheat and is adaptable for other
grain types. Briefly, the system consisted of a hopper, a two‐
stage feeder, a photo‐electric trigger light sensor at the lower
end of the chute, an area scan color camera, two halogen light
sources, an air nozzle ejector device, two collection bins, and
a computer. Seeds were placed in the hopper and were trans‐
ported into the vibratory feeder through a belt feeder seed
pickup. This arrangement was necessary for more effective
singulation of seeds. The seeds then slid down an inclined
chute, and as they exited the lower end, a photo‐electric sen‐
sor detected the presence of a kernel and signaled the color
camera to capture a 640 × 480 color image. The image was
sent to the computer via an IEEE 1394 Firewire connection,
and the processing was done using a Microsoft Visual C++
program. A specific description of the working parts and per‐
formance can be found in Pearson et al. (2008). The major
difference between the system used in this study and that de‐
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scribed in the above reference is that the mirrors used for
multi‐view image capture were removed.

The procedure for corn kernel image acquisition was simi‐
lar to the procedure for NIRS. Prior to data collection, the
lamps and color camera were allowed to warm up for at least
an hour. Kernels in a packet were then placed into the feeder
to individually present them to the camera for image capture
and storage. Each packet was randomly pre‐sequenced by
level of infection, and the packets were fed several times until
60 kernel images were collected for each packet. The extra
10 images were kept as alternative images because some ker‐
nels were occluded in the images. All images were stored us‐
ing lossless 320 × 240 pixel bitmap (BMP) file format. This
apparent scaling down of the image size was a result of ex‐
traction of the raw image pixels from the Bayer patterned
image. Two rounds of image acquisition were performed for
a total of 120 kernel images for each packet.

DATA ANALYSIS
NIR Spectroscopy

Prior to statistical analysis, datasets were prepared by
merging the spectrum files and the sample data using Micro‐
soft Visual Basic 6.0. The spectra were constrained to the
range of 950 to 1650 nm to eliminate regions with higher
spectral noise due to lower sensor sensitivity. Spectral data
pretreatments  were applied using the same program, and the
datasets were saved in separate files.

Mean centering (MC) and standard normal variate (SNV)
are two of the many pretreatments commonly used for spec‐
tral data. The MC pretreatment brought the spectra to a com‐
mon zero absorbance axis using the following formula:

 XXXmc io −= λλ ,,  (1)

where X  is the mean of the absorbance values in the clipped
range of a spectrum, and Xmco , � and Xi , � are the mean‐cen‐
tered and original absorbance values, respectively, at a par‐
ticular wavelength (�, nm). This pretreatment essentially
eliminated shifts in the spectra caused by varying distances
of the kernels from the fiber optic cable as they traveled down
the light tube. Moreover, SNV pretreatment was applied to
the absorbance data to minimize the effects of scattering and
variable geometry of spectral acquisitions using the follow‐
ing formula:
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where X  and SD are the mean and standard deviation, respec‐
tively, of the absorbance values in the clipped range of a spec‐
trum, and Xsnvo , � and Xi , � are the transformed and original
absorbance values, respectively, for a particular wavelength
(�, nm). This study aimed to minimize further data pretreat‐
ments to achieve robust classification models.

The software, Tanagra version 1.4 (Rakotomalala, 2005),
provided a graphical user interface to easily compare differ‐
ent models for machine learning. The instance selection tool
in this program was used to randomly divide the dataset into
a training set for model development at 50% of the total, with
the remaining 50% as a validation set for model performance
evaluation.  To reduce the dimensional complexity of the
spectrometric  data, the five principal components (PCs) with
the highest eigenvectors were computed from the training set
and used as predictor variables. These five PCs were suffi‐

cient enough to explain at least 99% of the variation in the
spectra and were made consistent throughout the analyses.
Linear discriminant analysis (LDA) was used to find classifi‐
cation models to discriminate infected from uninfected ker‐
nels and to discriminate between infecting fungus types.
Similarly, a multi‐layer perceptron (MLP) artificial neural
network model with one hidden layer containing five neurons
was also explored. The models were developed using the
training set and were applied to both the training and valida‐
tion datasets.

Color Imaging
Matlab 7.0.4 release 14 and its Image Processing Toolbox

(The Mathworks, Inc., Natick, Mass,) were used to process
the images as follows. Using an M‐program script, a corn
image file was loaded and broken down into its red, blue, and
green planes. The pixel values in each color plane were bit‐
shifted to the right by two and counted into separate arrays.
This step assigned the values into 64 gray levels (from 0 to
63), thereby achieving more meaningful frequency histo‐
grams. Since the background was essentially black, the count
for the first level (zero value) was reset to zero. The frequency
histograms were normalized by dividing the counts in each
gray level by the sum of the remaining counts in all levels as
follows:
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where NFi is the normalized frequency at level i, and Fi is the
cumulative frequency count at level i. Furthermore, a cumu‐
lative normalized histogram was derived by subsequently
adding up the values of the normalized frequency histogram
from one to the target gray level i as follows:
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i
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where CNFi is the cumulative normalized frequency at the
target level i. An output file was finally generated by merging
the cumulative histograms of all the images in the dataset
with the details of the kernel samples.

LDA and MLP models were also used within the Tanagra
software to discriminate infected from uninfected kernels
and to discriminate between fungus types. However, only the
data coming from the red and green planes were utilized in
the analysis, as the blue plane contained little information to
allow for the discrimination of infection levels. This study
compared models derived from five PC scores of the cumula‐
tive histogram data against the models using raw cumulative
histogram data. The dataset was also divided into 50% train‐
ing and 50% validation sets, similar to the procedures
adopted for NIR data.

RESULTS AND DISCUSSION
NIR SPECTROSCOPY

Figure 2 shows a plot of the averaged, mean‐centered
spectra for kernels with level 3 infections by the different fun‐
gi. The spectra of the two control samples had a wider span
of values when compared to those of the fungus‐infected ker‐
nels, which substantially overlap one another, except for the
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Figure 2. Average mean‐centered absorbance spectra of control corn ker‐
nels (CON1 and CON2) and fungus‐infected kernels at level 3 (ASP1 = As‐
pergillus flavus, BIP1 = Bipolaris zeicola, DIP1 = Diplodia maydis, FUS1�=
Fusarium oxysporum, PEN1 = Penicillium oxalicum, PEN2 = Penicillium
funiculosum, and TRI1 = Trichoderma harzianum).

Aspergillus flavus sample (ASP1), which lies about midway
between the control kernel plots and the rest of the fungus
species and proved more difficult to classify. Previous studies
of NIRS for fungus detection utilized stationary kernels with
a fixed distance from the collecting fiber optic probe (Wang
et al., 2004; Pearson and Wicklow, 2006). As a result, the gen‐
eral shape of the NIR spectra of the kernels infected with dif‐
ferent fungi generally looked similar, and the main difference
was seen as shifts in the baselines. In this study, the kernels
were in motion, contributing to an unavoidable baseline shift
that required preprocessing treatment of the spectra to bring
them to a common axis. Mean centering (MC) is a feasible
and common approach; however, some spectroscopic varia‐
tions that can be useful for the classification models will be
lost in the data pretreatment process. Another approach is the
standard normal variate (SNV). This brings the curves even
closer to one another as it accounts for differences in the
spans of absorbance values in the course of correcting for
spectral scattering. This will leave the smaller spectral varia‐
tions caused directly by scattering or adsorption of NIR light
due to the different effects of the different types of fungi.

Intuitively, it was expected to be easier to discriminate
kernels at rather advanced stages of infection (levels 3 and 4)
from the control kernels compared to discriminating kernels
at early stages of infection (levels 1 and 2) from the control
kernels. Analyses for each level versus the control confirmed
this expectation, but for brevity, the classification accuracies
for only two cases are shown in table 2. Classifications by
fungus were generally more accurate compared to combined
fungus data. Combined data show reasonable classifications
for the control and level 4 infected kernels, but other levels
of infection were poorly classified. For further analysis, the
kernels at levels 3 and 4 were combined to represent kernels
at an advanced stage of infection. Similarly, levels 1 and 2
were combined to represent kernels in early stages of infec‐
tion. This is similar to the approach of Pearson and Wicklow
(2006).

Table 2. Classifications by infection level using LDA of NIR, mean
centered, spectra for all fungus species and FUS1 (all values are

percentages). Shaded cells show correct classifications.

Control
Level

1
Level

2
Level

3
Level

4
Total

Kernels

Classifications of all infected kernels
Control 76 14 8 2 0 400
Level 1 36 26 22 4 0 350
Level 2 8 14 44 20 2 350
Level 3 2 3 22 38 23 350
Level 4 0 0 1 17 69 350

Classifications of FUS1 infected kernels
Control 78 18 0 4 2 50
Level 1 20 56 20 4 0 50
Level 2 0 12 84 2 2 50
Level 3 0 0 8 70 22 50
Level 4 0 2 4 20 74 50

The NIR spectrometric data were analyzed using a two‐
stage approach. In the first stage, the main goal was to dis‐
criminate between the control and fungal‐infected kernels.
The second stage was aimed at discriminating between ker‐
nels infected with different fungus species. Table 3 shows the
results of the linear discriminant analysis (LDA) and multi‐
layer perceptron neural network (MLP) models for discrimi‐
nating infected kernels using the NIR spectrometric data
receiving the two pretreatments for kernels in the validation
sets. The numbers of kernels for each fungus‐infected set
were re‐sampled to keep the number of kernels in each class
as balanced as possible. All subsequent analyses used this
method for model development.

The results in table 3 show that, on average, slightly better
classification rates were obtained with MC compared to SNV
for discrimination between uninfected and infected kernels.
However, both the LDA and MLP models tended to classify
the kernels as infected at the expense of false positives of
uninfected control kernels. For levels 3 and 4, LDA can clas‐
sify the uninfected kernels better than infected ones (96%
versus 74%), while MLP had almost similar classification
rates of 92% and 91% for uninfected and infected kernels, re‐
spectively. As expected, discriminating infected and unin‐
fected kernels was much easier on average in this group

Table 3. Classification accuracies for control and infected kernels
using LDA and MLP neural network models on the validation

sets by NIR spectrometry (all values are percentages).

Level of Infection

LDA MLP

Control Infected Control Infected

Mean centering
Levels 1, 2 81 73 64 80
Levels 3 and 4[a] 96 74 92 91
All levels 89 79 84 83
Levels 3 and 4[b] 98 63 98 72

Standard normal variate
Levels 1 and 2 53 100 66 98
Levels 3 and 4[a] 97 75 88 91
All levels 85 59 82 82
Levels 3 and 4[b] 98 42 91 69

[a] The model calibration dataset was comprised of 50% of the control and
infected kernels at levels 3 and 4. The remaining 50% were used for
validation for this case only.

[b] The model calibration dataset was comprised of 50% of the control and
infected kernels at levels 3 and 4. The remaining 50% were used for
validation including kernels at levels 1 and 2. See text for explanation.
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Table 4. Classification accuracies for control and infected kernels by
fungus type using LDA and MLP neural network models on
the validation sets using mean centered NIR spectrometry

data (all values are percentages).

Fungus
Species

LDA MLP

Control
Levels
1 and 2

Levels
3 and 4 Control

Levels
1 and 2

Levels
3 and 4

ASP1 93 76 74 81 86 68
BIP1 93 65 90 94 70 93
DIP1 94 67 86 91 65 89
FUS1 82 80 88 80 76 88
PEN1 100 94 83 100 90 89
PEN2 96 80 92 94 71 90
TRI1 85 52 81 78 66 84

because of more pronounced differences in the observable se‐
verity of infection. For example, LDA had an average of 85%
(mean of 96% and 74%) for discriminating level 3 and 4 in‐
fected kernels from uninfected kernels versus an average of
77% for levels 1 and 2. One approach to model development
is to focus on the extreme cases of infection and use them for
the entire span of infection. This approach yielded poorer re‐
sults (table 3, mean centering, levels 3 and 4), with high clas‐
sification rates for uninfected kernels (98%) and lower rates
(63% and 72% for LDA and MLP, respectively) for infected
kernels. By properly using all levels in model development
(table 3, all levels), one can achieve a more robust model with
a balanced classification accuracy. The LDA model still dis‐
criminated uninfected kernels better than infected ones (89%
versus 79%), while MLP achieved balanced results at 83%
versus 84%.

The results varied according to fungus type when using
different modeling procedures to determine infection level,
as shown in table 4. In general, control kernels were better
recognized than infected kernels, and most infected kernels
were detected well at levels 3 and 4, with the exception of
kernels infected with ASP1. Most likely, the span of spectra
for ASP1 could have significantly overlapped those of nor‐
mal kernels, making any distinction difficult, as can be seen
in figure 2. Kernels infected with PEN1 were detected well
at levels 1 and 2, while other species had mixed results at this
level of infection. Detection differences between PEN1 and
PEN2 are attributed to the narrower range of infection in
PEN2, along with the fact that PEN1 showed signs of severe
sporulation and darker kernels, particularly for levels 3 and
4, which would be likely due to difference in species.

The accuracy of identifying the infecting fungus species
is higher at more advanced levels of infection because of bet‐
ter scattering of light, as explained by Pearson and Wicklow
(2006). Table 5 shows the results for the classification accura‐
cy of identifying the fungal species using the LDA and MLP
models at different levels of infection and data pretreatment.
Relatively better results were obtained for the MLP model
when using either the MC or SNV pretreatments. At an ad‐
vanced stage of fungal infection, the species BIP1 and PEN1
were most accurately identified, followed by the control and
FUS1. Both BIP1 and PEN1 had darker kernels than usual,
which could have aided in their identification. However, the
results for MLP with MC pretreatment indicated that PEN1
had higher levels of classification accuracy, even when all
levels of infection were considered. BIP1 classification accu‐
racies decreased markedly, from 99% for levels 3 and 4 to
63% for all levels. The low accuracies for ASP1 and DIP1
were likely caused by close similarity of their spectra to other
species and were thus misclassified as other species.

Using artificial neural network models instead of the LDA
models did not give any clear advantage for discrimination
between healthy and fungus‐infected kernels. Both types of
models used the same PC scores for model development,
which could have eliminated any nonlinear variations and
thus led MLP to perform as well as the LDA models. When
the entire sample set was sorted, less than 20% false negatives
for fungal infection were observed using the MLP models.
This rate of false negatives is most likely caused by inclusion
of asymptomatic kernels that are actually healthy as long as
their pericarps remain intact (Gembeh et al., 2001). Addition‐
ally, the kernels were continuously moving, such that when
spectrometric  data were taken by the instrument, sound areas
of the kernels may strongly influence the spectra. This would
further complicate the sorting process. A good approach to
overcome this is to re‐run the sound kernels until all infected
kernels are separated.

Identifying the infecting fungus was difficult, probably
because of the removal of the spectral baselines that could
help in the models. As expected, the more severe the infec‐
tion is, the easier the identification became. In addition, the
number and types of fungi that are incorporated in the model
development certainly affect the overall performance of the
model. A lesser number of species would enable more robust
separation of spectra, consequently decreasing the chances of
classifying a fungus‐infected kernel to the wrong species
class.

Table 5. Classification accuracy for identifying the fungus type using LDA and MLP neural
network models on the validation data sets by NIR spectrometry (all values are percentages).

Levels 1 and 2 Levels 3 and 4 All Levels

LDA MLP LDA MLP LDA MLP

MC SNV MC SNV MC SNV MC SNV MC SNV MC SNV

CON 72 32 72 28 90 34 92 77 88 69 88 45
ASP1 20 35 0 25 27 17 42 12 34 14 23 12
BIP1 38 36 45 50 83 83 98 99 41 54 63 63
DIP1 18 14 1 1 60 33 68 53 6 4 13 12
FUS1 58 54 57 39 69 69 63 78 61 51 61 47
PEN1 84 81 86 94 94 79 90 99 68 66 93 97
PEN2 57 59 53 49 52 57 56 36 42 22 61 54
TRI1 51 41 82 69 59 72 58 65 63 45 75 73

Mean 50 44 50 44 67 56 71 65 50 40 59 50
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Figure 3. The normalized cumulative frequency plots of the red and green
image planes of corn control kernels (CON1 and CON2) and fungus‐
infected kernels (ASP1 = Aspergillus flavus, BIP1 = Bipolaris zeicola,
DIP1�= Diplodia maydis, FUS1 = Fusarium oxysporum, PEN1 = Penicil‐
lium oxalicum, PEN2 = Penicillium funiculosum, and TRI1 = Trichoderma
harzianum) also showed substantial overlap.

Table 6. Classification accuracies for control and infected kernels
using LDA and MLP neural network models on the validation

sets by color imaging (all values are percentages).

Level of Infection

LDA MLP

Control Infected Control Infected

With PCA
Levels 1 and 2 62 65 68 79
Levels 3 and 4 89 83 86 82
All levels 75 75 56 85

No PCA
Levels 1 and 2 59 64 37 84
Levels 3 and 4 86 83 89 81
All levels 68 71 69 72

COLOR IMAGING
Normalized cumulative histogram plots for the red and

green color channels are shown in figure 3 for the different
fungus types at advanced stages (levels 3 and 4) of infection.
The line plots for the control and ASP1 appear at the bottom,
while BIP1, PEN1, and PEN2 species compose the upper re‐
gion. This separation could be explained by the relatively
higher abundance of darker pixels that skew their histograms
to the left, leading them to accumulate pixels faster than the
images of the other fungus species.

Table 6 shows the classification accuracies of various
models for identifying control and infected kernels. Similar
to the trend of the NIRS results, higher levels of infection had
better classification accuracies (81% to 89%). When the en‐
tire data set (all levels) was used, classification accuracies of
75% were achieved with LDA. The use of principal compo‐
nent analysis on the data did not improve the classification
results, while LDA performed almost as well as the MLP
models, with or without the use of principal component anal‐
ysis. Compared to the NIRS results, the results of classifica‐
tion accuracy of color imaging was probably less attractive
because of the better interrogation of the physical state and
chemical constituent contents of kernels by NIRS. There was
no clear dominant result in the classification of the infecting
fungal species, except that slightly better results were again
observed for the BIP1 and PEN1 species (table 7).

One plausible constraint on the use of color imaging is the
limited electromagnetic range in which optical data can be
obtained. Physical discoloration in the kernels is the only
source of variation, and this could possibly work well for dis‐
crimination of the levels of infection for the same fungus spe‐
cies or between two species at a rather advanced stage of

Table 7. Classification accuracy for identifying the fungus type using LDA and MLP neural
network models on the validation data sets by color imaging (all values are percentages).[a]

Levels 1 and 2 Levels 3 and 4 All Levels

LDA MLP LDA MLP LDA MLP

+PCA ‐PCA +PCA ‐PCA +PCA ‐PCA +PCA ‐PCA +PCA ‐PCA +PCA ‐PCA

CON 66 34 35 20 43 32 31 34 46 41 34 44
ASP1 1 22 4 13 33 25 4 23 30 24 6 19
BIP1 28 34 13 39 42 43 38 38 43 38 27 36
DIP1 12 16 0 8 7 13 0 7 17 15 2 15
FUS1 19 16 11 17 27 19 7 6 32 24 0 15
PEN1 21 28 33 19 28 32 5 23 33 24 27 22
PEN2 13 15 36 14 21 16 15 24 21 16 15 26
TRI1 0 21 26 63 11 22 84 54 10 18 85 39

Mean 25 23 21 24 26 25 23 26 29 25 24 27
[a] +PCA = principal component analysis applied to the histogram data; ‐PCA = no principal component analysis applied.
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infection. Improvements to the vision system could include
the incorporation of multiple views of a kernel.

CONCLUSION
In general, NIRS and imaging methods have good recog‐

nition of heavily mold‐infected and uninfected kernels. The
rapid single‐kernel NIRS instrument performed better than
the color imaging system in discriminating between infected
and healthy corn kernels. This instrument also seems to per‐
form better at identifying the BIP1 and PEN1 fungal species
on heavily infected kernels, but it performs poorly for other
types and infection levels. In most cases, MLP models and
LDA models had similar levels of accuracy using any of the
data pretreatments. Despite the limited accuracy of the in‐
struments to discriminate lesser infected kernels, both were
able to discriminate between the uninfected and the more
heavily infected kernels. As such, this method could be useful
as a screening tool for quality control and studying hybrid re‐
sistance to infection or agronomic conditions leading to sig‐
nificant incidences of mold.
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